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A new route to perimidines has been developed which involves reaction of a nitrile oxide with 1,8-dia-
minonaphthalene. Benzonitrile oxide, generated by dehydrochlorination of benzohydroximoyl chloride,
and 1,8-diaminonaphthalene afforded 2-phenylperimidine. 2-Pyranosylperimidines were prepared by
the same approach from pyranosyl hydroximoyl chlorides.

� 2009 Elsevier Ltd. All rights reserved.
Perimidines (1H-benzo[d,e]quinazolines) (1) are unusual among
azines in that the lone pair of a pyrrole-like nitrogen participates in
the p-system of the molecule, and there is a transfer of electron
density from the heterocycle to the naphthalene ring.1 These peri-
naphtho-fused pyrimidines therefore have the characteristics of both
p-deficient and p-excessive systems.2 They have long been used in
dyestuffs1 and in the manufacture of polyester fibres,1 and more
recently as a source of a novel carbene ligand.3 Their biological activ-
ity has also attracted attention, for example, their potential to act as
anti-fungal, anti-microbial, anti-ulcer and anti-tumour agents.1,4,5

Most synthetic routes1 to 2-substituted perimidines are based on
the reactions of 1,8-diaminonaphthalene (2, DAN) with various car-
bonyl compounds. Carboxylic acids,6,7 acyl halides and anhydrides
afford the mono-amide derivatives 3, and these undergo acid-cata-
lysed cyclisation to 1. The corresponding reaction with aldehydes af-
fords 2,3-dihydroperimidines 4, which are readily dehydrogenated
to 1.8,9 Although a wide range of 2-alkyl, aryl and heterocycle-substi-
tuted perimidines have been prepared by these approaches, there
have been no examples bearing carbohydrate groups so far.
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It has previously been shown10–12 that the reactions of nitrile

oxides with 1,2-diaminobenzene can be used to prepare 2-substi-
tuted benzimidazoles. In view of the peri-arrangement of the two
amino groups in DAN, we reasoned that DAN and nitrile oxides
should react similarly, and thus provide a new synthetic approach
to 2-substituted perimidines. To test this hypothesis we attempted
to prepare the known 2-phenylperimidine (1, R = Ph)1,13 by reac-
tion of DAN with benzonitrile oxide (5, R = Ph). As nitrile oxides
are prone to dimerise to furoxans (1,2,5-oxadiazole N-oxides),14

the benzonitrile oxide was generated in situ by dehydrochlorina-
tion of benzohydroximoyl chloride (6, R = Ph). A solution of
PhCCl@NOH (1.3 mmol) and DAN (2.5 mmol) in dry EtOH was
heated at reflux for 5 h. After cooling and addition of CH2Cl2, the
reaction mixture was worked up by washing with aq K2CO3 and
then with 4% aq CuSO4, followed by chromatography; washing
with aq CuSO4 was found to be an effective means of removing
excess DAN. The product was identified as 2-phenylperimidine (1
R = Ph, 68%) by comparison of its physical and spectroscopic prop-
erties with those reported in the literature.13,15 The reaction is
believed to involve initial dehydrochlorination of the hydroximoyl
chloride by DAN acting as a base to generate the nitrile oxide 5,
then nucleophilic addition of one of the amino groups of a second
molecule of DAN to the nitrile oxide to form the mono-amidoxime
7, followed by cyclisation with loss of hydroxylamine, as illustrated
in Scheme 1.

Having established that 2-phenylperimidine could be prepared
by reaction of DAN with benzonitrile oxide, the same approach was
investigated using pyranosyl nitrile oxides as a route to 2-pyrano-
sylperimidines. We have previously described a method for the
synthesis of pyranosyl hydroximoyl chlorides and shown that they
are an efficient source of pyranosyl nitrile oxides.16,17 The same
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method was therefore used in the present work. In a typical exper-
iment, a solution of D-xylose-derived hydroximoyl chloride 6a
(0.6 mmol) and DAN (1.5 mmol) in dry EtOH was heated at reflux
for 5 h. Work-up of the reaction mixture as described above for 1
(R = Ph) afforded two products (Table 1, entry 1). The more polar
product (silica/Et2O, Rf = 0.27) was identified from its spectroscopic
properties18 as the target D-xylopyranosyl-perimidine 8a (16%). In
the 1H and 13C NMR spectra there were, in addition to the expected
peaks associated with the tri-O-acetylxylopyranosyl substituent,
characteristic signals for the carbons and hydrogens of the perimi-
dine moiety;9 in particular the dC values for C-2 (154.0 ppm), C-3a
(145.8), C-9a (139.4) and C-9b (123.6). The less polar product
(Rf = 0.35) was assigned the corresponding glycal structure 9a
(43%).19 In contrast to 8a, in this case only two acetate groups were
detected in the NMR spectra [dH 2.12, 2.10 (Me); dC 171.0, 170.9
(C@O) and 22.3, 22.2 (Me)] and, in addition to the perimidine sig-
nals, there were distinctive 13C peaks for the glycal carbons C-10

and C-20 at 149.2 and 99.9 ppm, respectively. In order to minimise
the formation of the glycal the reaction was repeated under less
forcing conditions (room temperature, 15 h). Under these condi-
tions the major product was the target pyranosyl-perimidine 8a
(60%) with only traces of 9a being detected (Table 1, entry 2).
The formation of 9a is attributed to facile base-catalysed elimina-
tion of acetic acid at C-10/C-20 of the xylopyranosyl ring yielding
the glycal in which the alkene unit is conjugated to the perimidine.
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Similar results were obtained with the reaction of hydroximoyl
chlorides 6b–d prepared from D-glucose, D-mannose and D-galact-

ose, respectively (Table 1). DAN and D-glucose-derived hydroximoyl
chloride 6b, at room temperature afforded the pyranosyl-perimidine
8b20 (65%), together with traces of the glycal 9b, and in EtOH at
Table 1
Formation of perimidines 8 and 9

Entry RCCl@NOH Conditionsa Pyranosyl-perimidine Glycal-perimidineb

1 D-Xyl (6a) A 8a (16%) 9a (43%)
2 D-Xyl (6a) B 8a (60%) 9a (trace)
3 D-Glc (6b) A 8b (16%) 9b (34%)
4 D-Glc (6b) B 8b (65%) 9b (trace)
5 D-Man (6c) A 8c (4%) 9b (34%)
6 D-Man (6c) B 8c (55%) 9b (trace)
7 D-Gal (6d) B 8d (69%) —

a A: 5 h, reflux; B: 15 h, room temperature.
b 2-(2-Deoxy-1-enopyranosyl)perimidines.
reflux, compound 9b was the major product (Table 1, entries 3 and
4). D-Galactopyranosyl-perimidine 8d (69%) was prepared similarly
from DAN and 6d (Table 1, entry 7). The corresponding reaction at
room temperature in the D-mannose series also yielded the expected
mannopyranosyl-perimidine 8c (55%), but in ethanol at reflux the
proportion of the glycal-perimidine increased to 9b:8c = 8.5:1
(Table 1, entries 5 and 6), consistent with the more favourable
arrangement for the elimination of AcOH.
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In conclusion, a new and efficient route to 2-substituted
perimidines has been established, based on the cyclocondensation

of 1,8-diaminonaphthalene with nitrile oxides. This approach is
particularly suited for the synthesis of 2-pyranosyl-perimidines
from pyranosyl nitrile oxides, which can readily be generated from
the corresponding hydroximoyl chlorides.
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